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FLUTTER OF FIAT RECTANGUIAR ORTHOTROPIC PANELS WITH

BIAXIAL LOADING AND ARBITRARY FLOW DIRECTION*

By Herman L. Bohon

SUMMARY

A theoretical analysis is presented on the flutter of flat simply supported

orthotropic panels at supersonic speeds. Modified piston theory is employed for

the lateral loading. Flutter boundaries obtained by the Galerkin procedure are

presented for square panels of various stiffness ratios with arbitrary orienta-

tion of maximum panel flexural stiffness with the airstream and various conditions

of biaxial compressive loading.

The boundaries show that orthotropic panels are highly sensitive to small

changes in flow angularity away from the condition of orientation of maximum

stiffness in the direction of the stream. Further, a small change from this

orientation can cause a change in the critical flutter mode, and there can be

stress ratios for which very large thicknesses are required for prevention of

flutter once the panel undergoes the mode change. The results also indicate that

a choice of proper panel orientation should be based on an analysis which includes

representative conditions on flow angularity and midplane loading. In addition,

a method for determining the intersection of the linear dynamic and static stabil-

ity boundaries is presented.

INTRODUCTION

The prevention of flutter of exposed skin surfaces of supersonic and reentry-

type vehicles has become a critical design problem, as is evident from flutter

experienced by recent vehicles operating at supersonic speeds. (See ref. i.)

Although numerous theoretical studies have been conducted (see ref. 2), the large

number of parameters influencing a flutter boundary discourage comprehensive

analytical studies. Furthermore, the experimentalists have extreme difficulty in

isolating the various parameters in experimental investigations and, consequently;

correlation between experimental and theoretical results is generally

unsatisfactory.

*The information presented herein was offered as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science in Engineering

Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, March 1963.



Someof the parameters knownto have a large influence on the flutter bound-
ary are panel geometry_ edge restraints, and midplane compressive loads. In addi-
tion, recent theoretical studies (see refs. 3 and 4) indicated large effects of
flow angularity (in the plane of the panel) on flutter of rectangular panels, free
of midplane loads (ref. 3), and with midplane compression and shear (ref. 4). The
theoretical analyses_ however, have considered only flat or slightly curved iso-
tropic panels and, with the exception of sometreatment in reference 5, no theo-
retical investigations have been conducted on flutter characteristics of ortho-
tropic panels.

The use of orthotropic panels (generally corrugation-stiffened panels) is
widespread in design of exposed-skin construction of supersonic and reentry-type
vehicles. In general, such panels have greater load-carrying ability per unit
weight than the conventional isotropic panel and thus provide a weight saving.
In addition, the corrugation-stiffened panel is adaptable to the severe tempera-
ture environment encountered at high supersonic speeds where alleviation of some
thermal stresses is essential.

Theoretical and experimental data depicting the flutter behavior of ortho-
tropic panels are practically nonexistent and the flutter characteristics of such
panels must, of necessity, be determined by wind-tunnel investigations. (These
investigations are sometimesrather extensive.) Thus, it is essential to evalu-
ate the influence of parameters affecting the flutter characteristics of ortho-
tropic panels.

The investigation reported herein will showthe effects of flow angularity
and biaxial compression on the flutter behavior of unbuckled orthotropic panels.
A four-mode Galerkin-type approximation to the solution of the governing equation
for lateral deflections is performed for simply supported rectangular orthotropic
panels and linearized aerodynamics from modified piston theory is employedfor
the lateral loading. The problem of proper orientation of the panel with the
airstream will be discussed.

SYMBOLS

A, B

An

a

D

Bn

parameters defined by equations (i0)

Nxa2 2 Dxy
stress parameter, 2n 2

panel length in x-direction

parameters defined by equations (18)

n2(a_2_'Nya2frequency paramet er, \_/ L-_D x n2(b) 2 - ga m_r

_2

2
cor



B--R' parameter defined by equation (15b)

b panel width in y-direction

bl, b2,b3,b 4 coefficients defined by equations (9)

bl,b2,b3,b4 coefficients defined by equations (19c)

Cmn Fourier series coefficients

c speed of sound

Dx maximum flexural stiffness of panel

Dy minimum flexural stiffness of panel

Dxy twisting stiffness of panel

d,e,k,p coefficients defined by equations (19b)

pc
ga aerodynamic damping coefficient_ --

7_r

Im imaginary part

j, Z,m,n,r, s integers

K x jKy

_nn2 rs

M

Nx

dimensionless measures of inplane buckling load in x- and y-directions,

respectively

generalized force coefficient defined by equations (6)

Mach number

inplane loading in x-direction_ positive in compression

Ny inplane loading in y-direction, positive in compression

Nx, cr_Ny_cr critical inplane loads

P--mn,rs generalized force coefficient defined by equations (6)

Q,R,S, Ro,S o coefficients defined by equations (13) and (19b)
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Figure i.- Fanel geometry and coordinate system.

8= M_-I

mass per unit area of panel

nondimensional coordinate, y/b

A flow angle in plane of panel_ deg

dynami c-pre ssure parameter,
2qa 3

_Dx

dynamic pressure of air-

pv 2
stream,

real part

time

flow velocity

lateral deflection of panel

Cartesian coordinates of

panel (see fig. i)

fixed coordinates based on

stream direction (see

fig. l)

frequency exponential
coefficient

hCF

P

_r

Subscripts:

j,Z,m,n,r_s

4

critical value of dynamic-pressure parameter

transtability speed

nondimensional coordinate_ x/a

density of air

real part of complex frequency exponential coefficient

circular frequency

reference frequency (see eqs. (7))

integers



ANALYSIS

An analysis of the governing equation for flutter of orthotropic rectangu-
lar panels with one surface exposed to supersonic flow is presented. The panel
geometry and coordinate system are shownin figure i. The panel has a length a
in the x-direction (direction of maximumstiffness) and width b in the y-
direction (direction of minimumstiffness). The flow direction in the plane of
the panel is at an arbitrary angle A measuredwith respect to the direction of
maximumpanel stiffness. The effects of constant inplane loads are included and
small deflections are assumed.

For small-deflection thin-plate theory the governing equation for vibrations
of orthotropic panels subjected to supersonic flow over one surface is

64w _2w _2w _2w _w 2q _w

Dx _4w + 2Dxy _4w + Dy _y4 + Nx _ + Ny - 7 pc_x---_ _x2_y2 _ _x 2 _y2 _t 2 _t _ _

(i)

where Dx and Dy are the flexural stiffnesses in the x- and y-directions,

respectively; Dxy is the twisting stiffness; Nx and Ny are constant inplane

loads, positive in compression; and 7 is the mass per unit area of the panel.

The last two terms on the right-hand side of equation (i) represent the linearized

lateral air forces given by modified piston theory. That is, the Mach number M

in the last term on the right-hand side of equation (i) is replaced by _, where

= M_ - i. In these terms; p is the density of air, c is the speed of

sound, and q is the dynamic pressure.

After transformation of the loading term to the panel coordinates and non-

dimensionalization, equation (I) becomes:

_4w 2(b)2 Dxy _4w 4 Dy _4w Nxa2 _2w Nya 4 _2w+ + + +

8_4 Dx _{28D2 (b) D x _ 4 Dx _{2 Dxb2 _D2

+

Dx _t 2 + Dca4 _w + 2qa3 (_c°s A)_ + a )_]Dx [(sinf =0
(2)

where

are:

x Y
= -- and B = ["a The boundary conditions for a simply supported panel



w(O,_,t) = w(l,_,t) = w(_,O,t) = w(_,l,t) = 0

_-_O(0,_jt) = _--_-_2W2(1,_t)=_2_(_O,t)= _-_2(_,l_t) =

(3)

A solution to equation (2) for these boundary conditions will be obtained by the

Galerkin procedure as follows. Let the lateral deflection of the panel be repre-

sented by:

w = Re _, _(Cmn sin m_ sin n_)e _t

m n

(4)

where _ in general, is complex. This equation satisfies the boundary conditions

term by term and the coefficients Cmn are arbitrary. Substituting equation (4)

into equation (2), multiplying by sin r_ sin s_, and integrating over the panel

yields the following set of equations for the coefficients Cmn:

J

iZ7
(m4 - m2_An - _)Cmn +-_ r=l s=l

X( COS A)_mn 'rsCrn

J

iZZ a+ -g  (sinA)Fmn,rsCms= 0
r=l s=l

(m = i, 2, J; (5)

n _ i_ 2, Z)

where

i

Lmn, rs _ 0

-0

4mr

r2 _ m2

Pmn, rs = 0

_0

4ns

s2 _ n2

n_s

m + r even, n ,_ s

m + r odd, n = s

m_r

n + s even, m -- r

n + s odd, m = r

(6)

and



h = 2qa3
_Dx

N a2 2 Dxy
An- x 2n2(aI __

_2Dx \o/ Dx

Bn = n2{a_2FNya2\_] _ n2{a12hy _2\b/ - ga (o% _r 2

2 _4Dx

_r 7a 4

pc
ga =_

%_r 9

(7)

In equations (7) _r is the lowest in vacuo frequency of a simply supported

semi-infinite plate and ga is the aerodynamic damping coefficient. A four-mode

solution to equation (5) has been obtained with the use of two terms of the sine

series of equation (4) in both the x- and y-directions (m = 1,2; n = 1,2). For

a nontrivial solution_ the determinant of the coefficients of Cmn must equal

zero; thus, for j = Z = 2,

8 h 8 a h
b I V--_ cos A sin A 0

3 b _4

_ 8 __ cos A b2 0 8 a h sin A
3 _4 3 b _4

8 a k sin A 0 b3 8
3 b _4 3 _4 cos A

0 8 a h sin A 8
3 b _4 3 _4 cos A b 4

o (8)

where

bI = 1 - _ - E

b 2 = 16 - 4_ -

- (b)2 D_b 3 = i - A - B + 6 Dx
Ny, cr

b4 =16- 4_-
\b/ Dx 3 Y Ny, cr

(9)
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and

N x
= K x

Nx 3cr

(io)

- ga e_r

Kx and Ky are dimensionless measures of the inplane

Ny, cr, respectively, defined by the following

= _ Y Ny, cr

In equations (9) and (10),

buckling loads Nx, cr and

expressions :

K x -_

Ky =

Nx, cr a2_

_2D x

Ny, cra2

2Dx

(ii)

Expansion of the determinant (eq. (8)) results in the following equation

in k:

Q + R + s = o (i2)

where

2

Q = (8)4_os2A - (b)2sin2A_

2

R = (blb 2 + b3b4)(8 cos A) +

S = blb2b3b4

(13)

No attempt has been made to reduce the expressions of equations (13) and the nota-

tion was adopted purely for convenience. It should be noted that for a speci-_

fled panel_ a/b, Dx_ Dy, and Dxy are constants, and, by equations (lO), A

is seen to be a measure of the inplane load in the x-direction. Further, _ is

a function of the frequency coefficient _ and the inplane load in the

y-direction.

In the absence of damping, equation (12) can be solved by assuming simple

harmonic motion; that is, let _ = i_, where _ is the circular frequency. Then

the critical value of _ for flutter occurs when two roots _ of the frequency

parameter B become equal or coalesce. (See refs. 6 and 7.) For values of

8



to and including _cr, all roots _ of the frequency parameter are real. For

> _cr, the pair of roots of _ that coalesce become complex conjugates and,

thus_ the panel has at least one unstable mode of oscillation.

A method for the solution of equation (12) when aerodynamic damping is

included is presented in references 6 and 8. This method will be outlined in the

following discussion for the purpose of determining the flutter criterion and to

develop equations from which numerical results for orthotropic panels at flow

angle A will be obtained.

Let the frequency coefficient _ and, consequently, the frequency parameter

be complex; that is, let

where _ is the circular frequency. Then 3 solving for

equations (i0) yields

(14)

where

from the last of

ga_r + - ' + i (15a)
_=W+i_- 2 -

B--R'= BR - ([ y Ny_cr (b) DYD (15b)

Equation (15a) may be examined to see what condition on ga is required to make

vanish. For specified values of ga the panel motion is stable if 9 is

negative and unstable if _ is positive. (See eq. (4).) Therefore, for flutter

(4 > 0) equation (15a) gives the following condition on ga (refs. (6) and (8)):

--2

BI 2 (16)
_>-- ga
BR '

When the conditions for the panel on the threshold of instability (4 = 0)

are considered, equation (16) requires that

--2
BI = ga2BBR (17)

Substituting _ = im into the last of equations (i0) gives the following expres-

sions for BR and BI:



BR = (5 Y Ny,cr

G_

BI = -ga _r

(18)

Equations (14) and the condition on ga (eq. (17)) permit rapid and direct solu-

tion of equation (12). Substituting the last of equations (14) into equation (12)

results in the following real and imaginary equations which must be satisfied

identically for the determinant of equation (8) to be zero:

Re:

Im:

-2

d

-p

+ (b sin 7 + S° +BI4 -

-2
kB I = 0

where

and

)2:I 1R o blb2 + b3b4 cos A + blb3 + b2b4 b

So = blb2b3b 4

82_

= bz + b2 + b3 + b4

_I=I-i-_R

_2 = _6 - 4_- _R

b3 = i- _- BR + 6(al 2
Dxy

Dx\u/ Ny, cr

_4 = 16 - 4_- BR + 24 _- 3 Y Ny, cr

19a)

(19b)

(19e)

l0



The dynamic-pressure parameter X can be eliminated between the real and_imag-
inary parts of equations (19a). This will result in an equation in _, BR, and

BI or an equation in _ and _r " Then for a specified stress condition and

for specified values of ga, the value of BR or _Tr for flutter is obtained;
the last of equations (19a) is then used to determine the critical value of _.

Representative values of ga were used in calculations presented in refer-
ence 6 for stressed, semi-infinite isotropic panels and in reference 8 for square,
simply supported isotropic panels; these results showednegligible effect on the
flutter boundaries. It is assumedthat similar effects are obtained for simply
supported orthotropic panels also. It should be noted, however, that aerodynamic
dampingmaynot be negligible for clampedpanels and for long narrow panels. In
this investigation numerical results will be obtained from equations (19a) only
for the case in which ga approaches zero. Equation (17) showsthat when ga
is vanishingly small flutter occurs for BI _ 0. Thus, equations (19a) reduce to

Re: Q + Ro + So = 0 (20)

and

(x)2 p (2l)Im: _ - d

It should be remembered that neglect of ga is the same as omitting the

first-order time-derivative term of equation (i). Then, the linearized air

forces in equation (i) reduce to the Ackere_t value and (see, for example, ref. 7)

a variety of combinations of _, _, and BR correspond to simple harmonic

motion. These conditions are given by solution of equation (20) alone. However,

simultaneous solution of equations (20) and (21) specifies only those values of

_, A, and BR for which the circular frequency _ of harmonic vibration is on

the verge of becoming complex; hence_ the panel is on the verge of becoming

dynamically unstable. Eliminati_ng _ from these equations gives the following

equation in terms of BR and A only:

Qp2 _ RoPd + Sod2 = 0 (22)

Thus, for a given value of _ and flow angle A, equation (22) is solved directly

for the value of BR for which flutter will occur. Then_ substituting this value

of BR into equation (21) gives the value of _ for flutter.

ii



Reduction of Equations at Flow Angles of 0° and 90°

At the extreme flow angles of 0° and 900 the solution to equation (22) can
be simplified further. Substitution of equations (18) into equation (22) results,
after considerably rearranging, in the following:

(2_)

Thus, for flow angles of 0° or 90o , only the parenthetical quantities of the first

and second terms, respectively, are retained. It is immediately apparent that in

either case the equation has two distinct roots and one double-valued root. By

definition, each root represents the conditions on the threshold of instability.

However, for the double-valued root the physical significance is not obvious but
will be discussed in a later section. For flow angles of 0° or 90o , equating the

appropriate parenthetical terms of equation (23) to zero and substituting into

equation (21) for p and d greatly reduce the labor of calculating the cor-

responding flutter values of _. For A = 0° the following equations result:

Jhl
(24)

b3 + b4 = °1 (25)

and

blb 2 - b3b 4 =

_4

(26)

12



Thus, for a given value of _, all flutter values of BR are obtained from the

first of equations (24) to (26); and the lowest corresponding flutter value of

obtained from the last of equations (24) to (26) is termed _cr"

Equations similar to equations (24) to (26) are obtained for a flow angle of

90 ° . When the same procedure as before is followed, the parenthetical quantities

of the s_cond term from equation (23) result in the following equations for eval-

uating BR and _ corresponding to flutter:

E1 + b_ = 01

Jhi
27)

and

h

_°2 + _)4 = O[

....

blb ] - b2b h =

28)

29)

It is worth noting here the modes that enter into the equations for _. For

A = 0°, equations (24) show that the parameters _i and _2 are sufficient to

determine XI; these parameters are seen to be functions of modes associated with

the coefficients CII and C21 only (see eq. (8)) and, thus, modes with n = i

are independent of modes with n = 2. The equation for hl (eqs. (24)) reduces

to equation (16) of reference 7 for isotropic panels where the modes associated

with the coefficients CII and C21 were used. Likewise, from equations (25)

X2 is seen to be a function only of the modes associated with the coefficients

C12 and C22 _ however, equations (26) are related by all four modes. Parallel

conditions exist for A = 90o , as seen from equations (27) to (29).

Critical Buckling Loads

The foregoing equations for flutter of stressed panels are valid only to the

point of buckling; hence, it will be useful to consider the buckling characteris-

tics of orthotropic panels. The buckling characteristics are functions of the

13



and the stiffness ratios Dy/Dx and Dxy/D x. The rangelength-width ratio a/b

of stiffness ratios for this investigation will be limited to those appropriate

to corrugation-stiffened panels (corrugated sheet with a single cover sheet).

The lower limits of this range have been taken from reference 9 in which several

different geometrical shapes of corrugations were considered. The minimum values

found for the stiffness ratios were Dxy = 0.15 and Dy = 0.0002. Arbitrary
Dx Dx

upper limits on the stiffness ratios which will be used in subsequent calculations

are Dxy = 0.50 and Dy = 0.02.
Dx Dx

The equation for the critical buckling loads at zero airspeed_ in terms of

length-width ratio and stiffness ratios, is obtained directly from equation (5)

by setting _ = _ = 0 and is

 2Dx b12 2 DU_]Imb ]2Nx + n2Ny ' + n4 Dy 2m2n 2 (30)
\aj ,cr cr - _ [ \_] (b) D-_ +

Buckling coefficients for several buckling modes are plotted in figure 2 for a

Dy
square panel (a = b) with stiffness ratios Dxy = 0.15 and - 0.0002. In the

Dx Dx

figure the coordinates are the dimensionless coefficients Kx and Ky which are

related to the critical inplane loads Nx, cr and Ny, cr by equations (ll). The

lines represent the variation of the buckling coefficients for various stress

ratios Ny/N x and the numbers on the lines denote the buckling modes which cor-

respond to the m and n terms in the series expansion (eq. (4)). Calculations

were made to include the first buckling mode for all compressive stress condi-

tions; but, for clarity, some of the higher intermediate modes have been omitted.

For Nx = 0 (Kx = 0), the lowest buckling mode corresponds to the coefficient

C18; as Kx is increased, several values of Ky/Kx or Ny/N x result in equal

choices of buckling modes. At a stress ratio N_ = 0.3 the buckling mode can be
Nx

associated with either Cll or C12; for stress ratios less than this value, the

buckling mode corresponds to Cll. It is interesting to note that for Ky = 0

(Ny = 0), Kx = 1.3 at the point of buckling; thus, for the specified panel con-

ditions, the orthotropic panel has only slightly better load-carrying capability

than a pinned-end column with the equivalent stiffness Dx. The insert in fig-

ure 2 shows the variation of the buckling coefficients with Ky extended into

the region of tension and will be referred to in later discussion.

14



RESULTS AND DISCUSSION

As is seen from equations (20)

and (21), flutter solutions are

dependent on four basic parameters:

the dynamic-pressure parameter h,

the stress parameter A, the fre-

quency parameter BR, and the flow

angle A. For the unstressed panel,

these parameters are, in turn_

dependent on the length-width ratio

a/b and the panel stiffness ratios;

for flutter of a stressed panel, the

stress ratio Ny/Nx and the criti-
Nx

cal stress parameter Kx must
Nx_ cr

also be specified. To explore in
detail the effects of each of the

variables on panel flutter would

indeed be a lengthy process and_ in

fact, unwarranted in a four-mode

analysis. It will be useful, how-

ever_ to illustrate some of the more

important effects of the various

parameters on flutter characteris-

tics of orthotropic panels. Thus_

in the subsequent sections numeri-

cal results are presented only for

a square panel (a = b) for several

conditions of flow angularity,

stiffness ratios, and inplane loads.

c o

Cx_/[]i x O. 15

OT/O × 0.0002

NV

_ Nx

Ky

I

---4 _- _

_6L

1.2

\\\

m,n i q

0.8 ,

",\

0.4 L 1,4 _-_

\\

I L L'XN

0.4 0.8 1.2

Kx

I

1,6

Figure 2.- Critical combinations of direct

biaxial-load coefficients for flat simply

supported orthotropic panel for selected

m_n and with no airflow. Nx, cr = K x _2D--_x.
a 2 '

2D x

Ny, cr = Ky a---_.

Effects of Flow Angularity on Flutter

The effects of flow angularity on flutter of orthotropic panels are shown

in figure 3 where values of the dynamic-pressure parameter h are plotted against

the frequency parameter BE for values of the flow angle A of 0°, 2°, and 90o .

The calculations were made for Nx = Ny = O_ a = b_ Dx--Y = 0.15, and
Dx

Dy = 0.0002. The results shown in figure 3 were obtained from solutions of the
Dx

real and imaginary parts of the flutter determinant (eqs. (20) and (21)). The

loops shown by the solid curves are solutions of equation (20) and represent

the variation of the panel frequencies with airflow. Note that for _ = 0 the

four values of BR correspond to the four natural frequencies in a vacuum (for

vanishingly small values of damping) for the assumed modes; these modes are

indicated by the Cmn terms at the base of the loops in figure 3- The dashed

15
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Figure 3-- Influence of airflow on panel fre-

quency parameter B R for flow angles of 0 °,

2 ° , and 90°; associated Cmn are indicated

for k = O, a = b; Nx = Ny = O;

_J = 0.0002; Dxy = 0.z5
D-_ Dq- •

curves correspond to solutions of

equation (21) and, thus, the inter-
sections of the dashed curves with

the solid curves specify the values

of _ and BR for which the real

and imaginary parts of the flutter

determinant are identically satis-

fied. The values of A and B--R

at these intersection points are

obtained directly from equation (22).

It is interesting to note that mini-

mization of h with _espect to the

frequency parameter BR from equa-

tion (20) leads directly to equa-

tion (21). Therefore, solutions to

equations (20) and (21) always inter-

sect wherever the frequency loops

(solid curves) in figure 3 have zero

slope. Thus, the contention of

Hedgepeth (ref. 7) that flutter is

imminent at coalescence of panel fre-

quencies (under the assumption of

zero aerodynamic damping) is further
substantiated.

At the extreme flow angles of

0° and 900 (figs. 3(a) and 3(c),

respectively) the intersections of

the solid curves and dashed curves,

denoted by kl, h2, and h3, are

readily obtained from equations (24)

to (26) for A = 0° and from equa-

tions (27) and (28) for A = 90o .

The lowest such value of h is the

critical value for flutter (denoted

hcr), provided that for values of

> _cr the corresponding values of

BR become complex (hence, a mode of

instability). Note that in fig-

ure 5(a) (A = 0°) there is a value

of k < kcr for which two values of

BR are equal. The flutter solution

at this intersection is given by the double-v_alued roots noted previously (see

eq. (23)), and the corresponding values of BR and A are obtained from equa-

tions (26). On the basis of the present analysis, this point is not clearly

shown to be a point of instability because, for l_rger values of _, the cor-

respondimg roots _ of the frequency parameter BR remain real. Additionally,

16



in reference 4 it is reasoned that the modes at this intersection which are

associated with the coefficients CII and C12 will not couple aerodynamically

at precisely zero flow angle. However, the solution at this point is degenerate

and a linear instability of the form te st is entirely possible. In any event,

the system is shown to verge on instability; however, the appropriate variable

is not X but the flow angle A itself, as will be shown presently. At a flow

angle of 2 ° (fig. 3(b)) the frequency loops have separated and an actual coupling

of the CII and C12 modes is apparent. Furthermore, there are four intersec-

tions of the real and imaginary parts of the determinant, and_ thus_ four bound-

ary points between stability and instability. The lowest critical value of

occurs at the point labeled (c) and the system is unstable until _ is increased

to a value corresponding to point (a). Now, however, there are again four roots
i

of BR_ all real, and all modes of oscillation are stable. Thus we have the odd

result of a stable region between the values of _ at points (a) and (b), above

and below which the panel is unstable. For increases in _ above the point (b)

there will always be at least one mode of instability.

The flutter boundary for all flow angles between 0 ° and 9 0o (for zero stress)

is shown in figure 4. In the regions below the boundary in figure 4 all four

2
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,,,

_(c) Unstable
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Figure _.- Stability boundaries of o_thotropic panel for arbitrary flow direction.
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roots of the frequency parameter BR are real and, thus, the panel is stable;

in the region designated as unstable, at least two roots of BR are complex con-

jugates and an unstable mode of oscillation exists. The boundaries labeled (a),

(b), and (c) in figure 4 correspond to the points (a), (b), and (c), respectively,

in figure 3(b). The stable region between boundaries (a) and (b) is shown to

shrink rapidly with an increase in flow angle and disappears at approximately

A = 7° . At small angles A the boundaries (a) and (c) approach each other as

the flow angle is decreased and they become coincident at exactly 0°. Hencej the

frequency crossing (fig. 3(a)) given by the double-valued root of equation (23)

has at least neutral stability (for ga = O) at a flow angle of O°; however, the

panel becomes unstable for any increase in flow angle, no matter how small. This

bounded region of stability accounts for the apparent abrupt change in mode and

the discontinuity in flutter boundaries shown in references 3 and 4 for isotropic

panels of length-width ratios less than 1.O.

The practical significance of the stable region between boundaries (a) and

(b) is somewhat difficult to assess. Such bounded regions of stability may exist

for many orthotropic panels wherein the streamwise stiffness Dx is considerably

greater than the cross-flow stiffness Dy. The size of the region appears to be

dependent on the proximity of the frequency of the lowest antisymmetric mode (C12)

to the first natural frequency (CII) . Although the bounded stable region shown

in figure 4 is small, the existence of such a region could result in scatter of

experimental data of investigations where the flow angle is not considered. On

the other hand, such a stable region appears to be of little consequence to the

designer as this region dissipates rapidly with flow angle (at least for the

orthotropic panel considered), and the lower curve (c) becomes the critical sta-

bility boundary.

The flutter boundary labeled (c) in figure 4 shows a pronounced effect of

flow angle. For the stiffness ratios considered, the critical value of the

dynamic-pressure parameter at A = 90 ° is only 6.8 percent of the value of

boundary (c) at zero degrees. Thus, there appears to be a marked advantage of

orienting the maximum panel flexural stiffness in the direction of the stream.

However, the flow angle may be expected to vary in flight, with variations up to

30o not unreasonable for lifting reentry-type vehicles. Inasmuch as such an

orientation away from an initial orientation of 0° would reduce kcr by 86 per-

cent, the practical value of initial orientation of maximum stiffness in the

stream direction is open to question.

The variation of _cr with flow angle for changes in the stiffness ratio

Dxy/D x is shown in figure 5. The curves were obtained for an unstressed panel

Dxy m
with Dx = 0.15, 0.3% and 0.50 and with Dy = 0.0002. 0nly the most criticalDx

boundaries corresponding to curve (c) from figure 4 are shown; the lower curve is

reproduced from figure 4. As can be seen from figure 5, increases in stiffness

ratio Dxy/D x with constant Dy/Dx indicate a general increase in hcf over

the entire range of flow angles.
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The variation of _cr with flow angle for changes in the stiffness ratio

Dy/D x is shown in figure 6. The solid curves are reproduced from figure 5 and

Dxy

correspond to the stiffness ratios of Dx - 0.15 and 0.50. The dashed curves

the effects of an increase in the value of the stiffness ratio Dy/D xrepresent

from 0.0002 to 0.02. As can be seen from figure 6, only small increases in _cr

are realized for the rather substantial increase in Dy/Dx. For example_ for the

Dy
curves corresponding to Dxy = 0.15 at A = 90o , a stiffness ratio of - 0.02

Dx Dx

resulted in an increase in _ only 1.3 times the value for Dy _ 0.0002. Thus,
Dx

for the range of stiffness ratios considered_ the flexural stiffness Dy is seen

to have little effect on the flutter boundary.

Effects of Inplane Loads at Various Flow Angles

Recent experimental investigations (see refs. i0 to 14) and theoretical

studies (refs. 4 and 15) on isotropic panels have revealed that panel suscepti-

bility to flutter increases with application of compressive inplane loads and

that generally the most susceptible condition occurs for the panel on the verge

of buckling or at the transition from a flat-panel flutter boundary to a buckled-

panel flutter boundary. Thus, calculations have been made to determine the

effects of uniform inplane loads at arbitrary flow angles for the panel stiffness

Dy _ratios of -- - 0.0002 and Dxy - 0.15. Before various loading conditions are
Dx Dx

considered, however, it would be useful to examine the geometrical relationship

of the basic flutter parameters con-

n : D

%y: 1)

r-_ /: - C i_'l

[',y//E> x _ r: {:( r:2

Figure 7.- Characteristic surfaces and asso-

ciated flutter boundaries.

tained in equation (20).

Vibration and buckling rela-

tions.- Solutions of equation (20)

result in smooth surfaces which will

be called "characteristic" surfaces.

Such surfaces are shown in figure 7

on a plot of the flutter parameters:

dynamic pressure _, frequency BR,

Nx
and stress Kx _. The charac-

Nx_ cr

teristic surfaces shown pertain to

the panel oriented at zero flow angle

and Ny = 0. A similar surface

representing a two-mode solution is

discussed in the appendix; however,

some additional comments about the

four-mode results are warranted here.

The intersection of the surfaces in

the zero h-plane shows variations of

2O



the panel in vacuo frequencies with stress. Planes of constant stress show the
effects of airflow on the frequencies. Note that for zero stress, the character-
istic surfaces trace the frequency variation as shownin figure ](a). As pointed
out in the discussion of figure 3, the roots of equation (22) locate the flutter
points. Thus_ for given stress conditions the solutions obtained result in the
lines along the ridge of the characteristic surfaces and at the intersection of
the two surfaces. Note from figure 7 that the character of the double-valued
root observed at zero degrees is preserved for the stressed panel. For exactly
zero flow angle, the flutter boundary corresponding to her is on the ridge (in
planes of constant stress) of the lowest loop (see fig. 3(a)) and is shownin
figure 7 as the solid line, whereas the intersection (dashed line) represents
conditions on the verge of instability with variation of A.

The intercept of the characteristic surfaces with the zero frequency plane
is shownby the loops in figure 7 for BR = 0 (for the panel conditions repre-
sented by fig. 7, BR = -0.0002 when _ = 0). These loops indicate the effects
of air forces on the static buckling loads. The flat-panel flutter boundary is
valid to its intersection with a postbuckled flutter boundary; this intersection
always lies above the intersection of the flat-panel flutter bounda_ and one of
the buckling loops. (See ref. 15 and the appendix.) Thus, the ]atter intersec-
tion, which will govern the termination of the flat-panel flutter boundaries to
be presented in later sections, may give a conservative estimate of the flutter
speeds. Solution for the termination points is very simple and is illustrated
in the appendix for a two-modeanalysis. For the four-mode analysis presented
herein, the termination points are obtained directly from equations (21) and (22)
for arbitrary flow angle, when the frequency ratio _/_r is set equal to zero

in the expression for BR (eqs. (18))_ equation (22) is solved for Kx Nx
Nx,cr

which is substituted into equation (21) for Xcr- Similarly, at the extreme
flow angles (A = 0° and 90° ) the reduced equations (eqs. (24) to (27)) pemnit
rapid evaluation of the termination points.

The peaks of the buckling loops represent the conditions wherein loss of
stable, static, buckled equilibrium occurs and, hence, is termed the "transtabil-
ity" flutter speed. (See ref. 16 and the appendix.) As can be seen from fig-
ure 7_ the termination points are somewhatremovedfrom the peak of the loop.

The appearance of the characteristic surfaces for flow angles other than
zero degrees maybe visualized with the aid of figure 8, in which the buckling
loops are shownfor A = 0°, 2°, and 90o, and with reference to the frequency
loops shownin figure _. The loops in figure 8 were obtained from equation (20)
for Ny = 0 and Kx = 1.3. The intercepts of the critical flutter boundary with
the loops, indicated by the circles, were obtained from equation (22) and/or the
corresponding reduced equations for A = 0° and 90o. The dashed curves are por-
tions of the corresponding critical flutter boundaries projected on the dynamic-
pressure--stress plane.

Figure 8(a) corresponds to the buckling loops shownin figure 7 and indi-
cates the difference in the transtability value and the termination point. In
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Figure 811 Influence of airflow on buckling loads
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lines represent portion of flutter boundary.)

figure 8(b), for A = 2° , the charac-

teristic surfaces have separated as was

the case shown in figure 3(b), and the

flutter boundary now corresponds to that

initially represented by the frequency

crossing. As noted previously, the

separation of the frequency loops low-

ered the critical value of the dynamic-

pressure parameter for flutter of the

unstressed panel (see, for example,

fig. 4); however, as can be seen in fig-

ures 8(a) and 8(b), at the termination

point the frequency separation results

initially in an increase in the value

of the dynamic-pressure parameter. In

figure 8(c), for A = 90o , the buckling

loops and, thus_ the characteristic sur-

faces, have degenerated into two inde-

pendent surfaces.

Stability re_ions of a flat panel

with inplane load.- Before the effects

of inplane loads on flutter boundaries

for a panel at arbitrary flow angles

are considered, it would be interesting

to investigate the effects of inplane

loads on the bounded stability region

shown in figure 4. The stability

regions resulting from application of

an inplane load Nx for flow angles

of 0° and 2° are shown in figure 9-

The calculations were made for stiff-

Dxy
ness ratios of -- = 0.15 and

Dx

Dy = 0.0002 and for Kx = 1.3. The

Dx

solid curves correspond to solutions

for a flow angle of 0°, whereas the

dashed curves and the upper solid curve

represent solutions for a flow angle of

2°. The upper solid curve labeled (b)

represents the flutter boundary at pre-

cisely zero degrees; the lower solid

curve represents the frequency crossing

shown in figure 7. The curves labeled

(a), (b), and (c) show the variation of

the respective flutter points from fig-

ure 3(b) with application of inplane load. The termination points (denoted by

the circles) correspond to the points shown in figure 8(b) for A = 2° .
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Figure 9.- Stability boundaries of flat panel with inplane compression for flow angles of 0 ° and 2 ° .

Circles represent termination points.

As can be seen from figure 9, for A = 2 ° the small stable region exists

over the entire flat-panel boundary. As the flow angle approaches 0 °, the dashed

curves (a) and (c) approach the lower solid curve and the unstable region dis-

appears. As the flow angle is increased above 2 ° , the boundary (a) approaches

the boundary (b) and, thus, the stable region disappears. Boundaries (a) and (b)

were noted previously to coincide (for Nx = O) at a flow angle of 7 ° .

The results shown in figure 9 could be of particular significance in experi-

mental panel flutter investigations since the unstable region bounded by curves

(a) and (c) could exist for only a slight deviation of flow angle from the true

zero position. Thus_ wind-tunnel investigations of a stressed panel could con-

ceivably result in two distinct flat-panel flutter boundaries or_ if not clearly

delineated_ could show up as apparent scatter in the data.
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Effects of inplane load N x at various flow angles.- Numerical solutions

N x

to equation (22) obtained fox" various values of (to the termination point)
Nx_ cr

O
and for flow angles of A = 0°, p , i0 °, 45 °, and 90 ° are shown in figure i0.

The calculations are based on Ny = 0 (Ky = 0), _'or which K x = 1.3 is obtained

from ftg_re 2. For Nx = % the values of the dynamic-pressure parameter at the

different flow angles are those shown by the curve in figure 4. The boundary cor-

responding to A = 0 ° is reproduced from figure 9 for comparison with boundaries

at other flow angles. The dashed fin% representing the frequency crossing_ is

also sho_ since this boundary signifies the beginning of the unstable region as

A ks increased. At A = 0°_ _cr decreases linearly with increasing values of

N x. As the flow angle is increased_ however, the flutter boundary is seen to be

less dependent on the inplane load. At A = 90o the flutter boundary is inde-

pendent of loading, inasmuch as the direction of inplane loading is at right

_cr

u b Nx

Ny 0

K x I 3 f'4•
:0 I 5 A=Oo

Dxy/Dx " i

Dy/O x :0.0002 __
' X

C'

/--A =450
oo

k_ A = 900 I J J

2 3 4

11x
Kx --

I_X ,C r'

Figure i0.- Flutter boundaries as functions of inplane load Nx for various flow angles. Circles

represent termination points.
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angles to the direction of flow. A

similar result was obtained in refer-

ences 7 and 15. It should be noted

that a small stable region exists

above the curve for A = 5 ° (see

fig. 4); however, this region is

omitted here for simplicity.

Effects of stress ratio Ny/Nx.-

Flutter boundaries have been obtained

Ny _
for stress ratios of -- - 0.15 and

Nx

0.3 at flow angles of A = 0 °, 5 ° ,

and 90o . For stress ratios greater

than 0.3, higher mode buckling results

(see fig. 2); thus, more modes would

have to be used in the analysis. The

flutter boundaries are shown in fig-

ure ii where the dynamic-pressure

parameter is plotted against the stress

parameter Kx N---A---x.Figure ll(a)

Nx, cr

shows the boundaries for A = 0°, fig-

ure ll(b) for A = 5 ° , and figure ll(c)

for A = 9 0°. The stress ratio for

each curve is shown on the figure; the

Ny _
boundaries for -- - 0 are reproduced

Nx

from figure I0. In figure ll(a) a

single boundary is obtained for all

values of Ny/Nx, but the value of _cr

_;r

:3.IP[

,/b

--o U

N

Fi_D_re ii.- Flutter boundaries as functions of

stress ratio Ny/Nx for flow angles of O°_

O c, ,umd 90 ° . Circles represent temliination

poi_t s.

at the termination point is different for

each stress ratio. Thus, as was noted previously, the loading normal to airstream

Ny does not change the position of the flutter boundary but simply determines the

location of the termination point. The value of _cr at the termination point

for a stress ratio of zero is only 30 percent of the value for no stress and

represents a large increase in panel thickness for prevention of flutter. The

addition of Ny raises the termination point and, thus at A = 0 °, appears to be

beneficial. (It should be noted that an increase in Ny/N x is not necessarily

beneficial; see, for example, ref. 17.) However, the opposite is true for any

other flow angle, as is shown by figures ll(b) and ll(c). Increases in the stress

ratio result in decreases in the value of _cr for flutter until, at a stress

ratio of 0.3, the value of _cr at the point of buckling goes to zero. The fact

that _cr becomes zero is a result of the change in critical flutter modes (see

fig. 3) associated with the separation of the characteristic surfaces. See, for

example, the buckling chart shown in figure 2; at a stress ratio of 0._ the panel

has an equal choice of buckling modes (CII and C12), and, because these modes

coalesce for flutter (for flow angles other than zero degrees), any increase in
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h results in flutter. The condition of zero h, or infinite thickness, would

probably be circumvented if nonlinear effects were considered. The phenomenon

of infinite thickness for prevention of flutter is discussed in detail in refer-

ence 17. As noted previously, the change in critical flutter mode occurs instan-

taneously with a change in flow angle from the zero position; thus, the condition

of infinite thickness exists over practically the entire range of flow angles.

Several conditions of midplane compression have been considered, but no men-

tion has been made of effects of midplane tension. In genera_l, tension is con-

sidered beneficial in the alleviation of panel flutter. However, this may not

always be true if panel buckling is possible. Consider_ for example, the case

in which Ny is negative (tension) and Nx is in compression with the panel

oriented at zero flow angle. Note from the insert on the buckling chart (fig. 2)

that for a stress ratio of Ny = -0.77 the panel again has an equal choice of
Nx

buckling modes (CII and C21 ) . Note also from figure 3(a) that these two modes
#

are critical for flutter at precisely A = 0°; therefore, it can be concluded

that again _cr becomes zero for flutter. Calculations show that the flutter

boundary for negative Ny is actually an extension of the boundary in fig-

ure ll(a) where kcr continues to decrease linearly for negative increases of

the stress ratio Nv/N x.
J!

CONCLUDING REMARKS

A theoretical analysis for flutter of flat rectangular simply supported

orthotropic panels is presented. The lateral loading is obtained from modified

piston theory aerodynamics. Numerical results (obtained for zero aerodynamic

damping) are presented for arbitrary panel orientation with the airstream and

for various conditions of biaxial compressive stress. The panel is oriented such

that a flow angle of zero degrees corresponds to the direction of maximum panel

flexural stiffness alined with the stream. All calculations are based on a panel

length-width ratio of 1.0.

The results for an unstressed panel show that for prescribed stiffness

ratios, representative of corrugation-stiffened panels, the panel oriented with

the maximum flexural stiffness in the direction of the stream provides greatest

resistance to flutter. However, flutter characteristics of orthotropic panels

are found to be highly sensitive to variations in flow angularity from this

orientation. Thus, the practical value of orientation of maximum stiffness in

the direction of the stream is open to question. In the range of stiffness

ratios considered, changes in the stiffness ratio Dxy/D x were found to be

effective in changing the flutter boundary; however, a large range of the stiff-

ness ratio Dy/D x was found to be rather ineffective on the flutter results.

Any deviation of the panel from the position of precisely zero flow angle

was found to cause a change in the critical flutter mode. For small values of

the flow angle, this mode change resulted in a region of stable oscillations

_6



bounded completely by an unstable region; thus, the odd result that an increase

in the airspeed may render an unstable panel stable. The bounded stable region

was preserved with the inclusion of compressive inplane loads and resulted in

two distinct flat-panel boundaries (in a small range of the flow angle from the

zero position). Such characteristics could cause considerable discrepancy in

experimental data if not taken into account. In addition, as a consequence of

the change in critical flutter mode, for certain stress ratios, panels which

require a finite thickness at buckling when oriented at zero flow angle require

infinite thickness for all other flow angles. Thus, it is apparent that certain

stress ratios must be avoided in design.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., June 6, 1963.
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APPENDIX

A METHOD FOR DETERMINING THE INTERSECTION OF DYNAMIC

AND STATIC STABILITY BOUNDARIES

Experimental and theoretical investigations (see refs. i0 and 15) have shown

that the most critical condition for flutter of a panel subjected to compressive

inplame loads occurs at transition from the unbuckled to postbuckled flutter

boundaries. A method for estimating the critical flutter speed at transition (in

absence of a large-deflection analysis) is based on the transtability analysis

introduced in reference 16; this analysis considers only the static buckling

behavior of a panel (or beam) in the presence of supersonic flow. This approach

has been shown to give a good approximation to the flutter speed for infinitely

wide buckled panels (see ref. 18) and has been applied to three-dimensional iso-

tropic panels in references 7 and 17.

The results of a recent large-deflection dynamic analysis of finite isotropic

panels, presented in reference 153 indicate that the critical flutter speed at

termination of the flat-panel flutter boundary may, in different cases, lie above

or below the transtability speed and, thus, the transtability speed may be noncon-

servative. In no case, however, did the large-deflection flutter boundaries lie

below that critical speed defined by the intersection of the flat-panel dynamic

boundaries with the static stability boundaries. Hence, the critical speed at

this intersection is used in this paper to terminate the flat-panel flutter bound-

aries. The method for obtaining the intersection of the dynamic boundary with the

static stability boundary is presented in this appendix and the mathematical

expressions are shown to be as simple as those for the transtability speed. The

approach differs from the transtability concept in that the panel frequencies are

retained in the equations and, thus, it permits a traceable relationship between

the vibration, flutter, and buckling characteristics in the presence of supersonic

airflow.

For purposes of simplicity, only a two-mode analysis will be made; that is,

j : 2 and Z = i (see eq. (5)). Further, simple harmonic motion is assumed,

such that _ = i_, and damping is negligible (ga _ 0). Then for a zero flow angle

(A = 0°) the flutter determinant can be written, in the present notation, as

shown :

: o (AI)

where
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tion to equation (AI) in terms of the frequency parameter ]SIR.,after some

rearranging, is

B--R- 17- _A+ 3I(A_ - _ - 5)2 - (16h_2_Jt!_-_'

Solutions to equation (A3) result in a

characteristic surface like that shown

in figure 12 on a plot of the three

basic flutter parameters: dynamic pres- 4 A

2

sure h, frequency ratio (_) , and

stress A. Figure 12 is intended for

illustrative purposes only; hence, the
numerical values of h and _ are

unimportant. However, the two-mode

representation as shown is limited to

panel configurations and stress condi-

tions for which buckling occurs in the

first mode. Additionally, it should be

noted that the stress is not necessarily
zero for A = 0. 0

The intercept of the surface with

the zero h-plane shows the variation

of panel frequencies with stress. The

values of A at which the frequencies

become zero correspond to the two static

buckling loads for the assumed modes.

Planes of constant stress show the vari-

ation of panel frequencies with airflow.

Coalescence of the frequencies consti-

tutes dynamic instability (for zero

damping) and, hence, flutter (ref. 7),

2

since the eigenvalues (_) become

a_

I

i.--_?_,,

(c)

Figure 12.- Characteristic surface relating

vibrations, buckling, and flutter. Trace

in zero frequency plane shows variation

of buckling load with airflow.

(A2)

The solu-

(A})

• 2

cd r .
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complex for values of h above the peak of the frequency loop. Thus, the flat-

panel dynamic boundary is represented by the solid ridge line of the character-

istic surface. The intercept of the characteristic surface with the zero fre-

quency plane, represented by the trace in the hA-plane, shows the variation of

the panel buckling loads with airflow. This trace represents the static stability

boundary and results when the frequency is set equal to zero in equation (AI);

thus, the role of the eigenvalue is transferred to A. Above the peak of the

static boundary the loads disappear and, hence, from transtability considerations

no stable, static buckled configuration exists. Thus, the peak of the static

boundary (through which the plane labeled (b) in fig. (12) passes) constitutes

the transtability speed hT. The intersection of the dynamic boundary with the

static boundary (denoted kcr, and through which plane (c) passes) represents

the value of A for which the flutter frequency becomes zero, or, on the basis

of small-deflection theory, kcr corresponds to buckling in the flutter mode.

As seen from figure 12, hcf is less than hT.

The procedure for obtaining kcr is straightforward. Inasmuch as dynamic

instability results when the frequencies coalesce or become equal, it is seen from

equation (A3) that for flutter the radical term must always be zero. Hence,

and thus equation (A3) becomes

_4 16

- 17 - (As)
2

Equations (A4) and (AS) are completely general and, thus, locate the flutter

boundary for specified values of _; equation (A4) is identical to that obtained

in reference 7. Then the values of A and kcr at the intersection of the

dynamic flutter boundary with the static stability boundary is obtained by setting
2

the frequency ratio (_) equal to zero in the expression for BR (eqs. (A2))

and by substituting the result into equations (A4) and (AS).

It is of interest to note the relationship between hT and hcr; the differ-

ence in these values is dependent on the boundary conditions on inplane loads.

Consider, for instance, the case in which the panel is loaded by Nx only

(Ny = 0). From equation (A2), BR is a constant for = , and, hence,

substituting A from equation (A_) into equation (A4) yields

_4 4o

3o



and the corresponding value of _T' as shownin reference 7, is

_4
(A7)

Thus, _T is 25 percent greater than _cr" On the other hand, if the loading is

reversed (Nx = 0), the flutter boundary is independent of the loading and, hence,

_T = _cr and is given by equation (A4).

The equations developed to obtain _cr (eqs. (A4) and (A5)) are readily con-

verted to the form used in the text. E_uation (AS) is seen to be the sum of the

diagonal terms of equations (A2); that is,

bl + b2 = 0 (A8)

m

Further, upon substitution of BR from equation (AS) into the equation for bl

from equations (A2), equation (A4) can be written as

7 =_hcr 31_11 (Ag)

Equations (A8) and (A9) are seen to be identical to equations (24) of the text.
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